Multiscale Measurements Distinguish Cellular and Interstitial Hindrances to Diffusion In Vivo
نویسندگان
چکیده
منابع مشابه
Multiscale entropy to distinguish physiologic and synthetic RR time series.
We address the challenge of distinguishing physiologic interbeat interval time series from those generated by synthetic algorithms via a newly developed multiscale entropy method. Traditional measures of time series complexity only quantify the degree of regularity on a single time scale. However, many physiologic variables, such as heart rate, fluctuate in a very complex manner and present cor...
متن کاملDiffusion in multiscale spacetimes.
We study diffusion processes in anomalous spacetimes regarded as models of quantum geometry. Several types of diffusion equation and their solutions are presented and the associated stochastic processes are identified. These results are partly based on the literature in probability and percolation theory but their physical interpretation here is different since they apply to quantum spacetime i...
متن کاملIn vivo imaging method to distinguish acute and chronic inflammation.
Inflammation is a fundamental aspect of many human diseases. In this video report, we demonstrate non-invasive bioluminescence imaging techniques that distinguish acute and chronic inflammation in mouse models. With tissue damage or pathogen invasion, neutrophils are the first line of defense, playing a major role in mediating the acute inflammatory response. As the inflammatory reaction progre...
متن کاملMicroworm optode sensors limit particle diffusion to enable in vivo measurements.
There have been a variety of nanoparticles created for in vivo uses ranging from gene and drug delivery to tumor imaging and physiological monitoring. The use of nanoparticles to measure physiological conditions while being fluorescently addressed through the skin provides an ideal method toward minimally invasive health monitoring. Here we create unique particles that have all the necessary ph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2009
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.03.064